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We examine the dynamic formation and stochastic evolution of networks con-
necting individuals. The payoff to an individual from an economic or social activity
depends on the network of connections among individuals. Over time individuals
form and sever links connecting themselves to other individuals based on the
improvement that the resulting network offers them relative to the current network.
In addition to intended changes in the network there is a small probability of unin-
tended changes or errors. Predictions can be made regarding the likelihood that the
stochastic process will lead to any given network at some time, where the stochastic
process selects from among the statically stable networks and cycles. We apply
these results to examples including the Gale-Shapley marriage problem. Thus the
paper achieves two goals. First, it outlines a dynamic solution concept for net-
works. Second, it applies this concept to matching problems. Journal of Economic
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1. INTRODUCTION

Network structure is important in determining the outcome of many
important social and economic relationships. For example, networks play a
fundamental role in determining how information is exchanged. Such
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information may be as simple as an invitation to a party, or as consequential
as information about job opportunities (e.g., Boorman [6], Montgomery
[31], and Topa [37]), literacy (e.g., Basu and Foster [3]), consumer pro-
ducts (e.g., Ellison and Fudenberg [12] and Iacobucci and Hopkins [21]),
or even information regarding the returns to crime (e.g., Glaeser et al.
[18]). Networks also play fundamental roles in the payoffs earned from
bargaining with an organization (e.g., Wang and Wen [41]) and in the
exchange of goods and services. Exchange examples include trading net-
works and alliances (e.g., Bell [4], Maxfield [29], Kirman et al. [27],
Tesfatsion [38, 39], Weisbuch ez al. [42]), and networks through which
financial help or insurance is exchanged in developing countries (e.g.,
Fafchamps and Lund [14]). Even standard matching problems (e.g., the
marriage and college admissions problems studied by Gale and Shapley
[17] and Roth and Sotomayor [34]) are special situations where network
relationships are important.

Despite the fundamental importance of network structures in many
social and economic settings, the development of foundational theoretical
models to analyze how the decisions of individuals contribute to network
formation is still in its infancy. In this paper, we examine the dynamic
formation and stochastic evolution of networks, taking into account the
incentives that individuals have to form (or sever) links with each other.
We make two contributions in this regard. First, we develop a working
model of the dynamic formation of non-directed networks, which can be
applied to a wide range of economic and social settings. Second, we apply
this model to matching problems.

An Overview of the Model and Results

Our approach is to model network formation as a dynamic process in
which individuals form and sever links based on the improvement that the
resulting network offers them relative to the current network. This deter-
ministic dynamic process may end at stable networks or in some cases may
cycle. To this basic deterministic dynamic we add random perturbations
and examine the distribution over networks as the level of random pertur-
bations goes to 0. This stochastic dynamic process refines the prediction of
the deterministic process and provides a robustness check to see which
networks predicted by the deterministic dynamic are most stable in the face
of small perturbations. As one should expect some noise in applications,
the stochastic part of the analysis is important.

To be more specific, networks are modeled as graphs, where nodes or
vertices represent individuals and links or edges represent connections
between the individuals. Links are non-directed and thus reciprocal. A link
between two individuals can be formed only if both individuals agree to
add the link, while a single individual can sever an existing link. Each
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individual receives a payoff or net benefit based on the network configura-
tion that is in place. This payoff can be interpreted as the utility or pro-
duction that an individual obtains from the social interaction that occurs
through the network. As our approach does not require that we make any
specific assumptions on how value is generated by networks, the model is
very flexible and can be applied to a wide variety of social and economic
settings.

The primary tool that we introduce to analyze dynamic network forma-
tion is the concept of a sequence of networks that emerge when individuals
form or sever links based on the improvement the resulting network offers
relative to the current network. Such a sequence, called an ‘“improving
path,”? has the properties that (i) each network in the sequence differs from
the previous network by the addition or deletion of a single link, and (ii)
the addition or deletion of the link benefits the individual(s) whose consent
is necessary for the change.

The notion of improving path is somewhat myopic in that individuals do
not forecast how their decision to add or sever a link might affect future
decisions of other individuals or more generally how it might influence the
future evolution of the network. Such myopic behavior is natural in the
context of large networks where players may have limited information
about the incentives of others, and generally provides a useful starting
point for the study of the evolution of networks. Another limitation is that
only one link is considered at a time. However, this is easily extended and
later in the paper, in the context of matching models, we show that this
methodology is adaptable to allow for the simultaneous change of a
number of links.

The improving paths emanating from any starting network must lead to
either a pairwise stable network (where no two players want to form a link,
and no individual player wants to sever a link) or a cycle (where a number
of networks are repeatedly visited). We show that there always exists either
a pairwise stable network or a cycle from which there is no exit. We give a
simple trading network example to show that it is possible for cycles to
exist while pairwise stable networks fail to exist.

We then use improving paths as the foundation for a stochastic analysis,
where in addition to intended changes in the network, unintended muta-
tions or errors are introduced. Such unintended changes may be due to
exogenous forces acting on the network, or simply miscalculations or errors
on the part of an individual making an assessment or taking an action.
Such a process can be described as a Markov chain and we can apply
results concerning limiting behavior of Markov processes (Freidlin and

* This is similar to the concept of improvement paths of Monderer et al. [30], except for the
bilateral nature of the improvement in our setting.
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Wentzell [16], as adapted to discrete settings by Kandori et al. [26] and
Young [43]). Specific predictions can be made concerning the relative
amounts of time that the stochastic dynamic process will spend in various
networks. The process naturally gravitates to pairwise stable networks and
cycles, but periodically is bumped away by the random errors or mutations.
The intuition for which networks are visited most often comes from the
idea of resistance of Freidlin and Wentzell [16]. In the network context,
resistance keeps track of how many errors or mutations are needed to get
from some given network to an improving path leading to another
network. Very roughly, networks that are harder to get away from and
easier to get back to, in terms of resistance, are favored by the stochastic
process (although this favoritism depends on the full configuration of
resistance among different networks). We apply these ideas to several
examples to study the set of stochastically stable networks that emerge
under this stochastic dynamic process.

In the last section of the paper, we apply the stochastic dynamic network
formation model to matching problems, such as the Gale-Shapley marriage
problem and the college admissions (hospital-intern) problem (see Roth
and Sotomayor [34]). Such matching problems fit nicely into a network
setting and the methodology outlined above can be used to analyze which
matchings one expects to arise endogenously, in the absence of some coor-
dinating procedure. Theorem 2 shows that, in these problems, the set of
stochastically stable networks coincides with the set of (static) core stable
networks, which are necessarily Pareto efficient. Examples show how this
relationship depends on the definition of improving path that is applied.

The Closely Related Literature

The papers most closely related to this one are Jackson and Wolinsky
[25], Dutta and Mutuswami [10], and Watts [40].

The model and notion of pairwise stability that underlies the analysis
conducted here is from Jackson and Wolinsky [25]. Their focus was on
developing a model for the study of (static) stability of networks and using
this model to understand the relationship between stability and efficiency
of networks. Dutta and Mutuswami [ 10] and Jackson [22] have looked at
this relationship in further detail. As those analyses are static, they leave
open the question of which stable networks will form, if any, as they do not
consider cycles.

Watts [40] analyzes the formation of networks in a dynamic framework.
She extends the Jackson and Wolinsky [25] model to a dynamic process,
but limits attention to the specific context of the “connections model” dis-
cussed by Jackson and Wolinsky and a particular deterministic dynamic.*

* See also Hummon [20] for some simulations of a dynamic in the connections model.
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The new contributions here are in terms of both the wider collection of
network models that are admitted, as well as the introduction of the
concept of improving paths, the stochastic process, and the application to
the matching problems.

There are also other papers that provide theoretical models of network
formation in strategic contexts. Aumann and Myerson [ 1] were the first to
take an explicit look at network formation in a strategic context where
individuals had discretion over their connections; these connections defined
a communication structure that was applied to a cooperative game. Slikker
and van den Nouweland [36] have extended the Aumann and Myerson
[1] model to a one-stage model of link formation and payoff division.
However, the analysis in those papers is devoted to issues in cooperative
game theory such as the characterization of value allocations (see also,
Myerson [32]).°

Recent work by Bala and Goyal [2] is close in motivation to our paper,
as they are also interested in the dynamics of network formation. However,
their approach differs significantly from ours in some basic ways both in
terms of modeling and results. First, their focus is directed communication
networks, similar to a directed version of the connections model (see also
Dutta and Jackson [8]). Directed networks allow one individual to connect
to another without the consent of the second individual, and thus applica-
tions are to settings such as advertising, the sending of mail, and such.
These are fundamentally different applications from the non-directed net-
works that we consider here where both individuals need to consent to
form a relationship, which applies to social relationships such as friendship
and marriage, as well as trading relationships, insurance networks, job
contacts, bargaining networks, etc. Second, the directed networks end up
having different incentive properties as individuals can unilaterally form
new links, whereas here we need to consider the incentives of two
individuals in forming a link. Third, Bala and Goyal examine a repeated
game, and focus on learning as a way to identify equilibria, which is quite
different from the stochastic dynamic we examine here.

Finally, recent work on stochastic stability in game theory studies how
individuals play games when social structure determines who interacts with
whom (see for example, Ellison [11], Ellison and Fudenberg [12], Ely
[13], and Young [44]). That literature examines which strategies players
play in a game when the set of opponents that a player might face depends
on the social structure. The mutations are in the strategy that a given
player uses, and the literature examines how strategy choices and rates of
convergence depend on social structure. Here instead, our interest is in the
formation of the social structure itself. So we abstract away from behavior

% See Dutta and Jackson [9] for an overview of the network formation literature.
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that takes place after the network is in place (modeling that simply via a
payoff that each player gets as a function of the network) and so mutations
take place on the social structure itself.® The aim of this paper is to build a
dynamic model of network formation, showing that the Markov tools
underlying the game theoretic literature are natural and useful here, and
then to illustrate the model through some examples including an applica-
tion to matching problems.

The remainder of the paper is organized as follows. In Section 2 we
provide the definitions comprising the basic model. In Section 3 we analyze
improving paths and cycles. Section 4 contains the stochastic analysis and
dynamic stability results, including a discussion of dynamic stability and
efficiency. In Section 5 we apply the stochastic process to a class of match-
ing problems.

2. A MODEL OF NETWORKS

The model of social and economic networks that we consider is based on
that of Jackson and Wolinsky [25], henceforth referred to as JW. The
following definitions outline the model.

Players

Let N = {1, ..., n} be the finite set of players. Depending on the applica-
tion, a player may be a single individual, a firm, a country, or some other
autonomous unit.

Networks and Graphs

The network relations among the players are represented by graphs
whose nodes or vertices represent the players and whose links (edges or
arcs) capture the pairwise relations. We focus on non-directed networks
where links are reciprocal. The complete network, denoted g?, is the set of
all subsets of N of size 2. The set of possible networks or graphs on N is
{g|g<=g"}. The subset of N containing i and j is denoted ij and is referred
to as the link ij. The interpretation is that if ij € g, then nodes i and j are
directly connected, while if ij ¢ g, then nodes i and j are not directly con-
nected.

Let g+ij denote the network obtained by adding link ij to the existing
network g and let g—ij denote the network obtained by deleting link ij
from the existing network g (i.e., g+ij =g U {ij} and g—ij = g\{ij}).

¢ In applications where players strategically interact after a network has formed, these two
literatures can ultimately be brought together as it is then natural to have mutations in both
the social structure and in the strategy choice. See Jackson and Watts [24], Goyal and Vega-
Redondo [19], and Droste et al. [7] for such analyses and further discussion.
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If g¢' = g+ij or g’ = g—ij, then we say that g and g’ are adjacent.
Let N(g) = {i|3j s.t. ij € g} be the set of players involved in at least one
link and n(g) be the cardinality of N(g).

Chains and Components

A chain’ in g connecting i, and i, is a set of distinct nodes {i,, i,, ..., i,}
N(g) such that {i,i,, i5i3, ..., i, i,} = &

A nonempty network g' = g is a component of g, if for all i e N(g') and
jeN(g'), i #j, there exists a chain in g’ connecting i and j, and for any
ieN(g')and je N(g), ije gimpliesije g'.

Value Functions and Strong Efficiency

The value of a network is represented by v: {g|g < g"} —» R, where v(g)
represents the total utility or production of the network. The set of all such
functions is V. The value function allows for a wide variety of applications
and quite general forms of externalities. In some applications the value will
be an aggregate of individual utilities or production values, v(g) = 2,;u;(g2),
where u;: {g|g<g"} > R.

A network gc gV is strongly efficient if v(g)=v(g’) for all g’ = g”.
Strong efficiency and Pareto efficiency coincide when value is transferable.

Allocation Rules and Pareto Efficiency

An allocation rule Y:{g|g<g"}xV - RY describes how the value
associated with each network is distributed to the individual players.
Y:(g, v) may be thought of as the payoff to player i from network g under
the value function v. For simplicity, if v is fixed, we will simply write Y;(g).

The allocation rule may represent several things. When considering a
purely social network, the allocation rule may represent the utility that
each individual receives from the network and this utility might not be
transferable. When considering an exchange or production network, the
allocation rule may represent either the trades or production accruing to
each individual, the outcome of a bargaining process, or some exogenous
redistribution.

Pairwise Stability

The following concept describes networks for which no player would
benefit by severing an existing link, and no two players would benefit by
forming a new link.

" A chain is sometimes referred to as a path in the literature, but we reserve the term path
for a sequence of networks and use chain for a sequence of links.
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A network g is pairwise stable with respect to v and Y if

(@) forallijeg, Yi(g, v) =Y, (g—ij;v) and Y(g, v) > Y;(g—ij; v), and
(i) forallijé¢g,if Y(g,v) <Y(g+ij;v) then Yi(g, v) > Y(g+ij; v).

When a network g is not pairwise stable it is said to be defeated by g’ if
either g’ = g+ij and (ii) is violated for ij, or if g’ = g—ij and (i) is violated
for ij.

There are variations on the notion of pairwise stability discussed in JW.
Dutta and Mutuswami [10] discuss alternative approaches that capture
coalitional deviations.

3. IMPROVING PATHS AND CYCLES

Before proceeding to study a stochastic network formation process, we
first describe the deterministic sequences that are followed as a network
evolves. To avoid confusion, we emphasize that an improving path repre-
sents changes from one network to another, rather than a chain of links
within a given network.

Improving Paths

An improving path is a sequence of networks that can emerge when
individuals form or sever links based on the improvement the resulting
network offers relative to the current network. Each network in the
sequence differs by one link from the previous network. If a link is added,
then the two players involved must both agree to its addition, with at least
one of the two strictly benefiting from the addition of the link. If a link is
deleted, then it must be that at least one of the two players involved in the
link strictly benefits from its deletion.

Formally, an improving path from a network g to a network g’ is a finite
sequence of adjacent networks g, ..., gx With g, = g and g = g’ such that
for any ke {1, ..., K—1} either:

() gk+1 = g —ij for some ij such that Y (g, —ij) > Y,(gi), or
(i) gy, =gr+ij for some ij such that Y;(g.+ij)>Y;(g,) and
Yi(g+ij) = Y;(gi)-

So, an improving path is a sequence of adjacent networks that might be
observed in a dynamic process where players are adding and deleting links,
one at a time.

The behavior implicit in an improving path may be myopic in the
following sense. A player might delete a link making him or herself better
off, but this deletion may lead a second player to delete a second link which
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in turn leaves the first player worse off relative to the starting position. If
the first player foresaw this, he or she might choose not to sever the link to
begin with. This sort of consideration is not taken into account in our
analysis, and may be important when there are relatively small numbers of
forward-looking players who are well-informed about the value of the
network and the motivations of others. However, in larger networks and
networks where players’ information might be local and limited, or in net-
works where players significantly discount the future, myopic behavior is a
more natural assumption, and a reasonable starting point for our analysis.
In our setting all a player needs to know is whether adding or deleting a
given link is directly beneficial to him or her in the current circumstances.

In addition to the assumption of myopic behavior, there are other
assumptions in the definition of improving path that can be varied. For
instance, only a change of a single link is considered at a time,® but the
definition is easily adapted to allow for the simultaneous addition or dele-
tion of several links at a time. We consider this possibility of simultaneous
actions when we discuss matching problems in Section 5.

The improving paths emanating from any starting network lead either to
a pairwise stable network or to a cycle (where a number of networks are
repeatedly visited in some sequence). In fact, pairwise stability of a network
is equivalent to saying that a network has no improving paths emanating
from it.

Cycles

A set of networks C, form a cycle if for any g € C and g’ € C there exists
an improving path connecting g to g'.

A cycle C is a maximal cycle if it is not a proper subset of a cycle.

A cycle C is a closed cycle if no network in C lies on an improving path
leading to a network that is not in C. A closed cycle is necessarily a
maximal cycle.

The concept of improving path provides for an easy proof of the follow-
ing simple existence result.

LemMma 1. For any v and Y there exists at least one pairwise stable
network or closed cycle of networks.

Proof. A network is pairwise stable if and only if it does not lie on an
improving path to any other network. So, start at any network. Either it is
pairwise stable or it lies on an improving path to another network. In the
first case the result is established. So, consider the second case. Follow the

S0, in a sense the notion of improving path looks at better-than reply rather than best
reply dynamics. (See Ritzberger and Weibull [33] for a discussion of better-than reply
dynamics.)
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improving path. Given the finite number of possible networks, either the
improving path ends at some network which has no improving paths
leaving it, which then must be pairwise stable, or it can be continued
through each network it hits. In the second case, the improving path must
form a cycle. Thus, we have established that there always exists either a
pairwise stable network or a cycle. Consider the case where there are no
pairwise stable networks. Since there must exist a cycle, given the finite
number of networks there must exist a maximal cycle. By the definition of
maximal cycle and the non-existence of a pairwise stable network, there
must be at least one maximal cycle for which there is no improving path
leaving the cycle. (There can be improving paths leaving some of the
maximal cycles, but these must lead to another maximal cycle. If all
maximal cycles had improving paths leaving them, then there would be a
larger cycle, contradicting maximality.) Thus, there exists a closed cycle. ||

It is necessary in Lemma 1 to allow for the existence of either pairwise
stable networks or closed cycles. There are cases where only pairwise stable
networks exist and no cycles exist. For instance, in a model where adding a
link is always beneficial, all networks are on an improving path to the
complete network. Also, there are cases where only closed cycles exist and
there are no pairwise stable networks. The following example illustrates
this point.

Trading Example ( Nonexistence of a Pairwise Stable Network)

Players benefit from trading with other players with whom they are
linked, and trade can only flow along links. Players begin by forming a
network. Subsequently, they receive random endowments and trade along
chains of the network. Trade flows without friction along any chain and
each connected component trades to a Walrasian equilibrium. The
expected utility for a player of being in a given network is calculated by
expecting over the Walrasian equilibria that result in the player’s connected
component as a function of realized endowments.

There are two goods. All players have identical utility functions for the
two goods which are symmetric Cobb—Douglas, U(x, y) = xy. Each player
has a random endowment, which is independently and identically distrib-
uted. A player’s endowment is either (1, 0) or (0, 1), each with probability
1/2, realized after the network is in place. For a given network, Walrasian
equilibria occur on each connected component, regardless of the configu-
ration of links. For instance, three players in a line have the same trades as
three players in a circle (triangle), but with a lower total cost of links. Let
the cost of a link be equal to 5/96 (to each player in the link).

Let us show that if n is a least 4 then there does not exist a pairwise
stable network. The utility of being alone is 0. Not accounting for the cost
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of links, the expected utility for a player of being connected to one other is
1/8. This is calculated by noting that there is a 1/2 probability that the
realized endowments will differ, in which case the players will trade to an
allocation of (1/2, 1/2) which results in a utility of 1/4 for each of the two
players. There is also a 1/2 probability that the realized endowments will
be identical in which case the utility will be 0 for each player. Similar cal-
culations show that, not accounting for the cost of links, the expected
utility for a player of being connected (directly or indirectly) to two other
players is 1/6; and of being connected to three other players is 3/16. Most
importantly, the expected utility of a player is strictly increasing and
concave in the number of other players that she is directly or indirectly
connected to, ignoring the cost of links.

Accounting for the cost of a link, if £ players are in a connected compo-
nent of a pairwise stable network, then there must be exactly k—1 links. If
there are more than k—1 links, then there is at least one link that can be
severed without changing the component structure of the network and so
some player can sever a link and save the cost of the link without losing
any expected utility from trading.

Note that if g is pairwise stable, then any component with 3 or more
players cannot contain a player who has just one link. This follows from
the fact that a player connected to some player who is not connected to
anyone else, loses at most 1/6—1/8 = 1/24 in expected utility by severing
the link, but saves the cost of 5/96 and so should sever this link.

From these two observations it follows that if a pairwise stable network
existed, then it would have to consist of pairs of connected players (as two
completely unconnected players benefit from forming a link), with one
unconnected player if # is odd. If z is at least 4, then there must exist at
least two pairs. However, such a network is not pairwise stable, since any
two players in different pairs gain from forming a link (their utility goes
from 1/8—5/96 to 3/16—10/96). Thus, there is no pairwise stable
network. From Lemma 1, we know that there exists a closed cycle. An
instance of a cycle in this trading example is {12, 34} to {12, 23,34} to
{12, 23} to {12} to {12, 34}. (A closed cycle includes many more networks,
as there are a number of alternative improving paths from each of these
networks.)

4. A STOCHASTIC PROCESS AND THE EVOLUTION
OF NETWORKS

The notion of improving path provides a basis for a dynamic process of
network formation, where starting at a given network one can make pre-
dictions about which network(s) might result. However, in some simple
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examples it makes strange predictions. For instance, consider an example
where there are economies of scale and a first link’s costs exceed its bene-
fits, but thereafter additional links are valuable. Starting at the empty
network, a deterministic formation process based on the idea of improving
paths will stay at the empty network, even though all players would be
better off with a more connected network. There are at least two ways that
one might expect to get around this. First, if players are forward looking
instead of myopic they might add a first link anticipating where the process
will lead. This is reasonable in situations where players are well informed
about the value of overall networks and about the incentives of other
players, but not in larger more anonymous systems. We stick with a
myopic model. Second, if there are random (exogenous) events that affect
network structure, then at some point a link might form and seed the for-
mation process. This is what we examine in some detail. Considering such
mutations has been successful in the game theoretic (stochastic stability, in
the language of Foster and Young [15]) literature in weeding out tenuous
equilibria, that are similar in spirit to the economy of scale example dis-
cussed above.

Stochastic mutations in the formation process may arise for a variety of
reasons. Mutations may be due simply to exogenous (unmodeled) factors
that are beyond the players’ control. Mutations may be due instead to the
bounded rationality of the players. Players simply make errors in calculat-
ing whether adding or severing a link is beneficial. Or it may be that
players have limited information, and occasionally experiment to see if
adding or severing a link will make them better off. It is quite likely that
players may have such limited information in large network settings.

What follows may be also thought of as a check on the robustness of
pairwise networks or cycles. Although a number of networks may be
pairwise stable, they can differ in how resilient they are to random muta-
tions. For instance, it may be relatively easy to leave and hard to get back
to some networks, and vice versa for others.

The discussion that follows takes as given Y and v, although we omit
notation indicating this dependence.

A Stochastic Dynamic Process

At a discrete set of times, {1, 2, 3, ...} decisions to add or sever a link are
made. At each time a pair of players ij is randomly identified with proba-
bility p(ij) > 0. The (potential) link between these two players is the only
link that can be altered at that time. (One may think of a random meeting
process where players randomly bump into each other and time is iden-
tified with the bumping times.) If the link is already in the network, then
the decision is whether to sever it, and otherwise the decision is whether to
add the link. The players involved act myopically, adding the link if it
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makes each at least as well off and one strictly better off, and severing the
link if its deletion makes either player better off. After the action is taken,
there is some small probability ¢ > 0 that a mutation (or tremble) occurs
and the link is deleted if it is present, and added if it is absent.® Thus
mutations or trembles operate on link creation and destruction.

The above process naturally defines a Markov chain with states being
the network in place at the end of a given period. The Markov chain is
irreducible and aperiodic given non-zero trembles, and thus has a unique
corresponding stationary distribution. As & goes to zero, the stationary
distribution converges to a unique limiting stationary distribution.

The following definitions are adaptations of ideas of Foster and Young
[15], Kandori et al. [26], and Young [44] (as based on Freidlin and
Wentzell [16]) to the network setting.

Stochastic Stability

A network that is in the support of the limiting (as ¢ goes to 0) stationary
distribution of the above-described Markov process is stochastically stable.

For a given network, g, let im(g) = {g’| there exists an improving path
from g’ to g}.

Resistance of a Path

A path p={gy, ..., g} is a sequence of adjacent networks. The resis-
tance of a path p={g,, ..., gk} from g’ to g, denoted r(p), is computed by
r(p) =31 1(g, gi11), Where 1(g;, g:,1) =0 if g € im(g;,,) and 1(g;, &i11)
= 1 otherwise.

Resistance keeps track of how many mutations must occur along a spe-
cific path to follow that path from one network to another. A mutation is
necessary to move from one network to an adjacent one whenever it is not
in the relevant players’ interests to sever or add the link that distinguishes
the two adjacent networks. This notion of resistance of a path then pro-
vides a natural notion of the resistance from one network to another as the
path of least resistance from one to the other.

Let r(g’, g) = minimum{r(p) | p is a path from g’ to g} and set r(g, g) =0.
Note that r(g’, g) =0 if and only if g’ is in im(g) or g’ =g. Thus, if g’ and g
are in the same cycle, then r(g’, g) =0.

g-Trees

Given a network g, a g-tree is a directed graph which has as vertices all
networks and has a unique directed path leading from each g’ to g. Let

° The probability of a mutation is the same for any link. See Bergin and Lipman [5] for a
discussion of the role of such an assumption.
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T(g) denote all the g-trees, and represent a ¢ in 7(g) as a collection of

ordered pairs of networks, so that g'g” € ¢ if and only if there is a directed
edge connecting g’ to g” in the g-tree ¢.

Resistance of a Network

The resistance of a network g is computed as r(g) =min, .7, > e, (g, &")

TueOREM 1. The set of stochastically stable networks is the set
{g|r(g) <r(g') forall g'}.

The proof of Theorem 1 is in the appendix. It is an application of results
of Freidlin and Wentzell [16], as adapted by Young [43] and Kandori
et al. [26], concerning limiting distributions of aperiodic, irreducible
Markov processes. Note that the set of stochastically stable networks is
always nonempty as we are taking a minimum over a finite set.

Remark. Theorem 1 (and the results below) hold for any definition of
improving path. As illustrated in Section 5, these results are easily adapted
to variations on the definition of improving path.

Before illustrating the implications of Theorem 1, we provide a couple of
auxiliary results.

LemMma 2. If g'eim(g) and g¢im(g'), then r(g) <r(g'), with strict
inequality if g is pairwise stable or in a closed cycle. Thus, if g is stochasti-
cally stable, then either g is pairwise stable or part of a closed cycle.
Furthermore, if one network in a closed cycle is stochastically stable then all
networks in the closed cycle are stochastically stable.

Lemma 2 has analogs in the game theory literature (for instance in
Young [43]). The proof is routine and appears in the Appendix.

Noting that only pairwise stable networks and closed cycles matter in the
dynamic process, and that resistance along improving paths is 0, simplify
the calculations of resistance as follows. Given a closed cycle C and a
network g, let r(C, g) =r(g’, g) where g’ is any network in C, and similarly
r(g,C)=r(g,g') where g’ in C. These are well defined since r(g’, g) =
r(g”, g) (and similarly r(g, g') =r(g, g")) for any g’ and g” in C since there
is a path of zero resistance between g” and g'.

Given a network g, a restricted g-tree is a directed graph which has as its
root g, and as other vertices the pairwise stable networks and closed cycles,
and has a unique directed path leading from each other vertex to g. Denote
the set of restricted g-trees by R7T(g). In the following lemma, we let x
denote a generic vertex which could be a network g’ or a cycle C. The
following lemma follows from a result by Young [1993], as shown in the
Appendix.
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LEMMA 3. 7(g) =min,gre) Dwe. 1(X, X").

The implication of Lemma 3 is that the resistance of a network may be
calculated by restricting attention to resistance between pairwise stable
networks and closed cycles. Any network that is not pairwise stable or in a
closed cycle lies on an improving path to a pairwise stable network or
closed cycle, and so their additional consideration does not add to the
resistance.

Let us illustrate the stochastic dynamic formation of networks in the
following examples.

In the first example there are 22 pairwise stable networks, while the only
stochastically stable network is the pairwise stable network from this set
with the lowest total value and lowest allocation per player.

Co-author Example

Consider the co-author model of JW with 7 players. Each player is a
researcher who spends time writing papers. If two players are connected,
then they are working on a paper together. The amount of time researcher
i spends on a given project is inversely related to the number of projects, »;,
that he is involved in. Formally, player i’s payoff is represented as

w@®= T b
jiijeg Wi My MR,
for n; > 0. For n; =0 we assume that u,(g) =0. Again, v(g) =,y %(2),
and Y;(v, g) = u;(g). Here, the interesting tradeoffs from connection come
from the benefit of gains from a co-author’s time (1/#;), at the expense of
diluting the synergy (interaction) term 1/(#;n;) with other co-authors.

If n =17 (see Proposition 4 in JW), there are 22 pairwise stable networks.
One is the complete network and the 21 others are networks where 5
players are completely interconnected and the 2 remaining players are
connected only to each other. There are no cycles. None of the pairwise
stable networks are strongly efficient. Moreover, the complete network is
strictly Pareto dominated by any of the 21 other pairwise stable networks.

Let us show that the complete network is the unique stochastically stable
network. Consider a restricted g-tree for the complete network. Each of the
other pairwise stable networks has distance 1 from an improving path to
the complete network. By severing the link between the two paired players,
one obtains a network on an improving path to the complete network
(either player will link with a member of the group of 5 if they have that
opportunity, and then would link with each of the others, and so forth).
Thus, the complete network has a resistance of 7!/(5!2!) = 21, which is the
minimum possible given the number of pairwise stable networks [22].
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However, consider a restricted g-tree for one of the other pairwise stable
networks. The complete network lies more than a distance of 1 away from
an improving path leading to some other pairwise stable network, since
severing only one link leads to a network only on an improving path back
to the complete network. So, for any of these pairwise stable networks, the
resistance will be greater than 21. Thus, by Theorem 1 and Lemma 3 the
unique stochastically stable network is the complete network.

While in the previous example, stochastic stability selected a single
network from among many pairwise stable networks; the decisiveness of
stochastic stability depends very much on the details of the setting. The
next example shows a situation where all pairwise stable networks turn out
to be stochastically stable, so that no selection is made.

Trading Example, Part 11

Consider the trading example again with n =5 and small ¢ > 0. In par-
ticular, let ¢ be small enough so that a player in a component of 4 benefits
by adding link to an unconnected player. In this case, the three pairwise
stable network structures are the star, line, and half-star (example,
{12,123, 35,34} is a half-star with player 3 in the center). All improving
paths lead to a pairwise stable network and so there are no cycles. Permut-
ing labels of players, there are 5 possible stars, 60 possible lines, and 60
possible half-stars.

Let us identify the set of stochastically stable networks. First, consider
the resistance of the line g = {23, 31, 14, 45}. The half-star {23, 31, 14, 15}
has a distance of 1 from im(g) as link 15 can be severed to get a sub-
network of g. The star {13, 12, 15, 14} has a distance of 1 from the half-
star {23, 31, 14, 15}. The remaining 11 half-stars, with player 1 in the
center, each have a distance of 1 from the star {12, 13, 14, 15}. The 12 half-
stars of the form {il, 1j, jk, jn} each have a distance of 1 from a half-star
with 1 in the center. The remaining 36 half-stars each have a distance of 1
from a half-star of the form {il, 1}, jk, jn}. Each of the remaining 59 lines
is a distance of 1 from a half-star. The remaining 4 stars are each a distance
of 1 from a half-star. Thus, the total resistance of g is 124 which is the
minimum possible resistance given the number of pairwise stable networks.
Similarly it can be shown that every star, half-star and line has a resistance
of 124, and so it follows from Theorem 1 and Lemma 3 that all pairwise
stable networks are stochastically stable.

Remark. As seen in the co-author example, there is no guarantee that
the stochastic process will lead to an efficient network. Theorem 1 in JW
shows that there are situations where no strongly efficient network is
pairwise stable (and where there are no cycles), even if one is free to select
the allocation rule Y from a large class (i.e., those which are anonymous
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and component balanced, as in JW). Thus, there are examples where no
strongly efficient network is stochastically stable even when one is free to
select the allocation rule Y. Nevertheless, one would hope that in situations
where at least one strongly efficient network is pairwise stable, the stochas-
tic process would select some strongly efficient network as one of the
stochastically stable networks.

However, we show in Proposition 1 of the companion working paper
(Jackson and Watts [23]) that given settings where at least one strongly
efficient network is pairwise stable there does not exist an allocation rule
from a large class (i.e., those which are anonymous and component
balanced) which always allows at least one strongly efficient network to be
stochastically stable. Thus there are settings that have a unique efficient
network which is pairwise stable, while that efficient network is not
stochastically stable for a wide class of allocation rules. So, no matter how
total value is reallocated one cannot get the efficient network to be stochas-
tically stable.

5. AN APPLICATION TO MATCHING MODELS

We now examine a particular application of the network formation
model, namely network formation in matching problems, such as the Gale
and Shapley [17] marriage problem and the hospital-intern or college
admissions problem. (See Roth and Sotomayor [34] for a detailed over-
view of these problems.) This section is of independent interest as both an
application of the dynamic network formation model, as well as an analysis
of stochastic dynamics in the Gale and Shapley matching world.

In matching problems, there are restrictions on the set of admissible
networks so that only some subset G of all possible networks is feasible.
We provide definitions for two of the most extensively studied of these
problems.

Marriage Problems

For the marriage problem, the set of players N is divided into a set of
men, M = {m,, ..., m;}, and a set of women, W = {w,, ..., w; }. A network,
g, is feasible if each woman is linked to at most one man, and each man is
linked to at most one woman.

Thus, G = {g|ij € g implies ik ¢ g for k # j, and for ij € g, i € M implies
jeW and i e W implies j e M}.

Let m,(g) = {j|ij € g} denote the match of player i in the network g.

In a marriage problem, v(g) =>;.» #;(g), and Y;(v,g2) = u;(g), where for
each i, u;: G - R depends only on the match of i. That is, for each i ; is
such that u;(g) = u;(g") whenever m;(g) = m;(g’).
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Hospital-Intern and College Admissions Problems

For the hospital-intern (or college admissions) problem, the set of
players N is divided into a set of hospitals, H = {h,, ..., h;}, and a set of
interns, I = {iy, ..., i, }. A network, g, is feasible if each intern is linked to
at most one hospital, and each hospital, 4, is linked to at most ¢, interns,
where g, > 0 is the quota for the hospital; thus each hospital has a fixed
number of slots.

Thus, G = {g|#m;(g) <gq; for ie H and #m,(g) <1 for iel, and for
ijeg, i€ H implies je I and i € I implies j e H}.

Again, v=>, 5 u;,(g), and Y;(v, g) =u,(g), where for each i, u;: G > R
depends only on the matching of i. That is, for each i, is such that
u;(g) = u;(g') whenever m;(g) =m;(g’).

We restrict attention to Hospital-Intern problems where preferences are
responsive (see Roth and Sotomayor [34]). This is the condition that a
hospital (college) has a ranking over interns (students) and an empty slot,
such that preferences over subsets are consistent with the hospital’s
(college’s) ranking.

Preferences are responsive if for each h e H there exists y,: Nu & - R
such that if

@O m,(g)=m,(g)uvi, then u,(g)>u,(g") if and only if y,(i) >
(D),

() m,(g) =m,(g')/i, then u,(g)>u,(g') if and only if y,(i) <
yi($), and

(iii) m,(g) =m,(g')vi/j, then u,(g) > u,(g') if and only if y,(i) >
(h)-

Next we give the definition of a core stable network. A network g is core
stable if there is no group of players who each prefer network g’ to g and
who can change the network from g to g’ without the cooperation of the
remaining players. In the marriage problem, it turns out that a network is
core stable if and only if no player wants to sever his/her current link and
no two players want to simultaneously sever their existing links and link
with each other. This notion of core stability has been explored in great
detail in matching models, beginning with Gale and Shapley (see Roth and
Sotomayor [34] for an overview).

Core Stability

A network g € G is core stable if there does not exist any set of players 4
and g’ € G such that:
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(i) Y:(g')=Y.(g) for all i € A (with at least one strict inequality),
(i) ifijeg butij¢g,thenie 4and je 4, and
(iii) ifij¢ g’ butije g, then eitheri e 4 and/or je A.

ExAMPLE (CONTRAST OF CORE STABILITY AND PAIRWISE STABILITY'?).
Consider a marriage market with two men and two women. Preferences are

ml: Wi, Wy
My Wy, Wy
wiimg, m,

Wyt My, My .

The above table can be read as follows: m,’s first choice for a spouse is
w; and his second choice is w,. The remaining preferences can be read in a
similar fashion.

The unique core stable matching is {m;w,, m,w,}. However, both
{m,w,, myw,} and {m;w,, m,w,} are pairwise stable. Also, both networks
are stochastically stable. From either network, two links need to be severed
to get to an improving path to the other network.

In the above example, the pairwise stability of {m,w,, m,w,} suggests
that the definition of improving path might not be appropriate in the
matching setting where there are restrictions on the number of links that a
player may have. In particular, if m, and w, were to meet, they would like
to join but need to sever their existing links in order to form a new link.
This suggests allowing players to sever links at the same time as they add
them. This is permitted under the following variation on the notion of
improving path.

Simultaneous Improving Paths

A simultaneous improving path, is a sequence of networks g, ..., gx in G
such that if g’ follows g in the sequence then either

() g =g—ijandeither Y,(g') > Y,(g) or Y;(g') > ¥;(g), or

(i) geG and g e{g+ij—ik g+ij—ik—jm,g+ij, g+ij—jm}
where ij¢ g and Y(g') >Y,(g) and Y;(g')>Y;(g) (with one inequality
holding strictly).

1 Gale and Shapley have a notion that they call pairwise stability, which corresponds to the
definition of core stability when A is restricted to have no more than two members. In these
matching problems, that definition of pairwise stability corresponds with core stability. We
use the term pairwise stability in the sense of JW, as indicating the lack of improving paths
leaving a network.
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Improving paths are a subset of simultancous improving paths. Here the
simultaneity refers to the fact that a player may make several changes at
once: a player may both sever an existing link and add a new one. Note
that the above definition can be altered so that the players, when adding a
new link, sever the minimum necessary number of links in order to add the
given link.

In the context of the marriage and hospital-intern problems, a core
stable network g is any network from which there is no simultaneous
improving path leaving g.

As illustrated in the following example, cycles can exist with the notion
of simultanecous improving path. (There are no cycles in the marriage
problem under the notion of improving path, as a cycle requires some
simultaneous changes to be made.)

ExAMPLE (EXISTENCE OF A CYCLE IN A MARRIAGE PROBLEM). Consider a
marriage problem with two men and two women, where preferences are as
follows:

ml: Wi, W2
My Wy, Wy
Wl: mz, ml

WQ: m;, m,.

There exists a cycle under the definition of simultaneous improving path:
{myw,} to {m,w,} to {m,w,} to {mw,} to {mw,}.

The existence of a marriage cycle was first demonstrated by Knuth [28]
and is also discussed in Roth and Vande Vate [35]. While there are cycles
in the marriage problem there are no closed cycles. That follows from the
main result in Roth and Vande Vate [35], which in the network language
says that from each network there is a simultancous improving path
leading to some core stable network. This implies (from Lemma 2 here)
that all stochastically stable networks will be core stable networks. So a
question arises as to which core stable networks are stochastically stable.

It is known (since Gale and Shapley [17]) that the set of core stable
matchings has nice properties. There is a man-optimal core stable matching
which is the unanimous favorite of all men out of the set core stable
matchings, and similarly there is a women-optimal matching. One core
stable matching is preferred by all men to another if and only if all women
have the reverse preference ordering over the two matchings. We want to
know if the men and women optimal matchings will be stochastically
stable, and if so if they will be the only stochastically stable matchings. To
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answer these questions, let us describe a stochastic process that corresponds
to the notion of simultaneous improving path.

A Simultaneous Stochastic Process

At each time a pair of players is randomly identified (where each pair
has a positive probability of being identified that is i.i.d. across time). If the
link is already in the network, then the decision is whether to sever it;
otherwise, the two players are allowed to form the link and at the same
time sever up to one existing link each. Their actions are constrained to
lead to a feasible g in G, so in some cases they must sever an existing link in
order to add the new link. The players involved act myopically, adding the
link (with corresponding severances) if it makes each at least as well off
and one strictly better off, and severing the link if its deletion makes either
player better off. After the action is taken, there is some small probability
that a tremble occurs and the link is deleted if it is present.

There are many possible interpretations for such trembles in the
marriage model. Consider two people who should get married but do not,
due to a tremble. Such a tremble could represent a fear of change on the
part of one of the players. Alternatively, consider a couple who are married
and should stay married, but divorce due to a tremble. Here such a tremble
could represent a mid-life crisis, a desire to exit a rut, or experimentation
by a spouse to see if divorce will put them on a better improving path.

Note that we consider only trembles that delete the given link; thus one
does not have to worry about the constraints imposed by feasibility, which
might bind in the case of adding a link. This turns out to be irrelevant due
to the natural tendency towards the addition of beneficial links, the restric-
tions on numbers of links, and the absence of externality effects. !

S-Stochastically Stable Networks

The set of networks that is the support of the limiting stationary distri-
bution (of the simultaneous improving process) is the set of S-stochastically
stable networks.

THEOREM 2. Consider the marriage problem where players’ preferences
are strict (and players are allowed to prefer staying alone to being in some
matches). The set of S-stochastically stable networks coincides with the set of
core stable networks.

'What is important is that it is impossible to have a situation where someone hesitates to
add a link, that once added would lead to changes in incentives for the subsequent networks.
In the marriage model, and the college admissions model with responsive preferences, if a link
were added that did not benefit the players involved, it would simply be deleted at the next
opportunity.
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The results of Roth and Vande Vate [35] imply that if one starts at an
empty network, then a (mutationless) random meeting process could result
in any core stable network, depending on the order in which players
happen to meet. Theorem 2 strengthens our understanding of the forma-
tion of matchings to also show that every core stable network is actually
s-stochastically stable. Thus, there are no core stable networks that are
more fragile than others in the face of mutations that might randomly
break links.

The proof of Theorem 2 is in the Appendix. An outline is as follows. By
Roth and Vande Vate [35], there are no closed cycles in the marriage
problem and so every network which is not core stable is on a simultaneous
improving path to a core stable network. We show that each core stable
network that is not man optimal is only one link away from a simultaneous
improving path that leads to a core stable network with strictly more men
matched to their man-optimal mates. This fact is utilized to build restricted
g-trees for core stable networks. Each such restricted g-tree has a resistance
of K—1, where K is the number of core stable networks. Thus, we establish
that every core stable network has the same resistance and so all are s-
stochastically stable.

The reason that this result is somewhat surprising is that the example
below shows that the set of pairwise stable networks does not coincide with
the set of stochastically stable networks. So, as we are making parallel
changes in these definitions one might not expect the set of core stable and
S-stochastically stable networks to always coincide either.

ExaMPLE (CONTRAST WITH PAIRWISE STABLE AND STOCHASTICALLY
STABLE NETWORKS). Consider a marriage problem with two men and two
women. Preferences are

mp: wy, w,

m,: w,, alone

wy: my, alone

Wyt iy, My
Thus m, prefers being alone to being matched with w,. Here {m,w,, m,w,}
and {m,w,} are both pairwise stable, but only {m,w,, m,w,} is stochasti-

cally stable. This follows since it takes two mutations to get from
{myw,, myw,} to {m;w,}, but only one mutation to go the other way.

Theorem 2 extends to the college admissions (hospital-intern) problem,
as we now state.
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COROLLARY 2. Consider the college admissions (hospital-intern) problem
with strict and responsive preferences. The set of S-stochastically stable net-
works coincides the set of core-stable networks.

Proof. This follows from the proof Theorem 2, by considering a related
marriage market where each college is replicated g, times. (For more on the
relationship between the college admissions and marriage problems see
Chapter 5 in Roth and Sotomayor [34].)

Responsiveness is critical to Corollary 2, as shown in the following
example.

ExampPLE (ROLE OF RESPONSIVENESS). Consider a college admissions
problem with 1 college and 3 students. The set of feasible networks allows
only for links that involve the college and a student. Here the term “full
network” refers to the network with all three feasible links. Assume that
each student prefers being in the college to being out. The college prefers to
have all three students to none, but prefers none to having any proper
subset of students. Thus, the college’s preferences fail to satisfy responsi-
veness.

There are two pairwise stable networks: one that has each student linked
to the college and another where none are linked to the college. The only
network that is “core-stable” is the full network.

Under stochastic stability the resistance of the full network is 2 (to get
from the null network to the full network, at least two links must exist for
the third to be added). However, the resistance of the null network is 1
(delete one link from the full network and it lies on an improving path back
to the null network). Thus, only the null network (which is Pareto ineffi-
cient and out of the core) is stochastically stable. Similarly, only the null
network is S-stochastically stable.

6. CONCLUSION

As we have emphasized, there are many modeling choices that have been
made with respect to the dynamic process and the definition of improving
path. One modeling decision that deserves further attention is the myopic
behavior of players in the definition of improving path. It would be natural
to have forward-looking players in situations with a small number of
players who are well-informed about the incentives of other players, the
allocations and valuations, and who care about the future. A interesting
problem for future research, is to develop an appropriate definition of
improving path for forward looking players and find the set of stochasti-
cally stable networks for these forward-looking improving paths.
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To get an idea of what types of differences might emerge from the
myopic model, consider the following three-player example. Let players
have payoffs which meet the following inequalities: ¥;(12) <0 < ¥;(12, 13)
<Y,(13) < Y,(12, 13, 23); Y,(23) <0< Y,(12,23) < Y,(12) < Y,(12, 13, 23);
Y;(13) < 0 < Y3(13, 23) < Y3(23) < Y5(12, 13, 23); Y;({}) =0 and 0<
Y;(ij, jk) < Y;(12, 13, 23), for all i. Thus {12, 13, 23} is the unique efficient
network. If players are myopic, then there are two pairwise stable net-
works, {12, 13,23} and {}. From the network {12, 13, 23} one link must be
severed to get to an improving path to {}. From the network {} one link
must be added to get to an improving path to {12,13,23}. Thus, by
Theorem 1, both networks are stochastically stable.

Now assume that players are non-myopic and care about future payoffs.
Assume also that each player knows every other player’s payoff function.
Suppose the players are currently in the network {12} and suppose that the
link {12} is identified and can thus be severed by either player 1 or 2. If
player 1 were myopic then he would sever the link. However, if player 1
values the future enough, then he will decide not to sever the link given
that he should have the opportunity to add the link 13 in the future which
will then eventually lead to the full network (as then the remaining link will
form when the opportunity arises), or else players 2 and 3 will add the link
23 which will eventually lead to the full network. Such reasoning relies on j
in the network {ij, jk} having the incentive to maintain both links with the
expectation that the link ik will soon be formed, which is better for j than
severing the link given sufficient patience. This reasoning provides forward
looking improving paths from any {ij} should lead to {12, 13,23}, and
similarly from any {ij, jk}, and so {12,13,23} emerges as the unique
stochastically stable network. Our reasoning here is only suggestive and
heuristic as one needs to carefully define forward looking improving path
to capture these ideas. It becomes clear even in this simple example that the
definition of such improving paths depends on what players expect
improving paths from other networks to look like, and for instance relies
on the belief that from some network {ij, jk} the only path will lead to the
fully efficient network and not back to some single link network. It appears
that such a definition needs to be inductive or self-referential, and so care-
fully developing such a notion presents a challenge for future research.

APPENDIX

Proof of Theorem 1. The proof is an application of a theorem from
Young [43].

Before stating Young’s [43] theorem, we give the following definitions.
Consider a stationary Markov process on a finite state space X with tran-
sition matrix P.
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A set of mutations of P is a range (0, a] and a stationary Markov process
on X with transition matrix P(¢) for each ¢ in (0, a], such that (i) P(¢) is
aperiodic and irreducible for each & in (0, a], (ii)) P(¢) > P, and (iii)
P(e),, > 0 implies that there exists r > 0 such that 0 <lim &"P(e),, < co.

The number r in (iii) above is the resistance of the transition from state x
to y. There is a path from x to z of zero resistance if there is a sequence of
states starting with x and ending with z such that the transition from each
state to the next state in the sequence is of zero resistance. Note that from
(i) and (iii), this implies that if there is a path from x to z of zero resis-
tance, then the nth order transition probability associated with P of x to z
is positive for some n.

The recurrent communication classes of P, denoted X,,..., X;, are
disjoint subsets of states such that (i) from each state there exists a path of
zero resistance leading to a state in at least one recurrent communication
class, (ii) any two states in the same recurrent communication class are
connected by a path of zero resistance (in both directions), and (iii) for any
recurrent communication class X; and states x in X; and y not in X; such
that P(e),, > 0, the resistance of the transition from x to y is positive.

For two communication classes X; and X, since each P(e) is irreducible,
it follows that there is a sequence of states x,, ..., x, with x; in X, and x; in
X; such that the resistance of transition from x; to x;,, is defined by (iii)
and finite. Denote this by r(x;, x,,,). Let the resistance of transition from
X, to X; be the minimum over all such sequences of 3_F (g, X4 1), and
denote it by r(X;, X;).

Given a recurrent communication class X;, an i-free is a directed graph
with a vertex for each communication class and a unique directed path
leading from each class j ( # i) to i. The stochastic potential of a recurrent
communication class X is then defined by finding an i-tree that minimizes
the summed resistance over directed edges, and setting the stochastic
potential equal to that summed resistance.

Also, given any state x, an x-tree is a directed graph with a vertex for
each state and a unique directed path leading from each state y( # x) to x.
The resistance of x is then defined by finding an x-tree that minimizes the
summed resistance over directed edges.

The following theorem is a combination of Theorem 4 and Lemmas 1
and 2 in Young:

THEOREM (Young [43]). Let P be the transition matrix associated with a
stationary Markov process on a finite state space with a set of mutations
{P(¢)} and with corresponding (unique) stationary distributions {m(e)}. Then
m(e) converges to a stationary distribution m of P, and a state x has m, >0 if
and only if x is in a recurrent communication class of P which has a minimal
stochastic potential. This is equivalent to x having minimum resistance.



290 JACKSON AND WATTS

To apply this to our setting, note that under the dynamic process, each
pairwise stable network and closed cycle is a recurrent communication class
of the corresponding process P (and these are exactly the recurrent com-
munication classes of P). Next, the transition from any network g to an
adjacent one g’ has probability on the order of ¢ if g is not in im(g’) (and
thus has resistance 1), and is of the order of 1 otherwise (and thus has
resistance 0). |1

Proof of Lemma 2. Let us start by showing that if g’ €im(g) and
g ¢im(g’), then r(g) <r(g’). Consider the g'-tree relative to which r(g’) is
calculated. Construct a g-tree by starting with the g’-tree and directing an
edge from g’ to g, and erasing the edge that led away from g. Since
g’ eim(g), it follows that the added edge has 0 resistance, so this g-tree has
a resistance of no more than r(g’). Thus, r(g) <r(g’).

Moving out of the order of the statement of Lemma 2, let us next verify
that if one network, g, in a closed cycle is stochastically stable then any
other network, g’, in the same closed cycle is also stochastically stable. To
see this simply start with a g-tree relative to which r(g) is calculated, and
switch the places of g’ and g. Since g and g’ are both connected to each
other by improving paths, r(g”, g) =r(g", g') and r(g', g")=r(g, g") for
any g”. Thus, the resistance will be unchanged, and so g’ must also be
stochastically stable.

Next, let us show that if g’ eim(g) and g¢im(g’) and g is pairwise
stable, then r(g) <r(g'). Again, construct a g-tree by starting with the
g'-tree relative to which r(g’) is calculated, directing an edge from g’ to g,
and erasing the edge that led away from g. Note that if g is pairwise stable,
then erasing the edge that led away from g saved at least 1 unit of resis-
tance. Since the added edge has 0 resistance, it follows that r(g) <r(g’).
This argument is extended to the case where g is in a closed cycle, as
follows. If the edge that led away from g in the original g’'-tree had a posi-
tive resistance, then the same argument as above works. If not, then it must
be that the edge leading away from g in the original g’-tree pointed to some
network in the closed cycle containing g. In that case, there must have been
some g” in the closed cycle containing g that had an edge exiting the closed
cycle. Construct the g” tree from the g’ tree as described above. By the
definition of closed cycle it must be that g’ € im(g") and g” ¢ im(g’). Thus
the above argument holds, establishing that g” is stochastically stable. So,
it follows that g must also be stochastically stable as it is part of the same
closed cycle. ||

Proof of Theorem 2. Consider the following results about the core
stable networks (see Roth and Sotomayor [34]):
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THEOREM A (Gale and Shapley [17], Knuth [28]). There exists a man-
optimal core stable network that all men weakly prefer to any other core
stable network. Similarly, there exists a woman-optimal core stable network.
If men all weakly prefer one core stable network g to another g', then the
women all weakly prefer g’ to g.

THEOREM B (2.22 in Roth and Sotomayor [34]). The set of players with
no links is the same in all core stable networks.

THEOREM C (Roth and Vande Vate [35]). From any g that is not core
stable, there exists a simultaneous improving path that leads to a core stable
network g'.

We use these in proving the following series of claims.

CLAmM 1. There exist no closed cycles.

This follows from Theorem C.

Cram 2. If there is a singleton core stable network, then it is the unique
S-stochastically stable network.

This follows from Claim 1.

CrLam 3.  Any core stable network, g, that is not man-optimal is one link
away from an improving path that leads to a core stable network, g', where
the number of men married to their man-optimal mates is larger in g’ than
ing.

Find a man in g who is not linked to his man-optimal mate and sever
that link. (By Theorem B, that man must be linked under g.) Call this man
m; and call this man’s former mate w;. By Theorem B, w; must have a man-
optimal mate who is linked. Let this man, m;, link with w; severing his
existing link. (By Theorem A and strict preferences, m; must prefer w; to
his current mate.) Since w; is unlinked she will benefit from forming a link
with m; (as she must prefer him to being alone given that she is linked to
him in the man-optimal core stable network). Now m;’s former mate is
unmarried, let her man-optimal mate sever his link and link to her. This
process can be continued as long as there is still a woman (and thus man)
who is disconnected and would be linked in a core stable network. (Recall
from Theorem B that the set of players involved in severing old links and
adding new ones is only the set of players who are connected in core stable
networks.) When this process ends, it must be that m; proposes to his man-
optimal mate. Let g” be the network reached. Note that this process
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follows a simultaneous improving path and that any man who has a dif-
ferent mate under g and g” must have his man-optimal mate under g”. If g”
is core stable then stop. Then by construction the number of men married
to their man-optimal mates is larger in g” than in g. If not, then there exists
a couple, say w, and my, who would both prefer to link and sever their
existing links under g”. Let them do so. (Note that w, was originally
matched to her man-optimal mate or, by Theorem A, to someone she
prefers to her man-optimal mate. Thus by strict preferences w;, must strictly
prefer m;, to her man-optimal mate. So, m; must strictly prefer his man-
optimal mate to w,; otherwise the man-optimal network is not core stable
since w, and m, would both prefer to sever their ties and marry. Thus if »,
is linked to w, and m, has the chance to propose to his man-optimal mate
he will.) Now m,’s former mate is unmarried. Let her man-optimal mate
propose. Continue as described above, which continues on a simultaneous
improving path. Since there are no cycles (Claim 1), this process ends at a
core stable network g’. By construction the number of men married to their
man-optimal mates is larger under g’ than under g.

CrLam 4. If there are k> 1 core stable networks, then the resistance of
the man optimal network is k—1.

This follows from Claims 1 and 3 by constructing a restricted man-
optimal tree by directing each core-stable g that is not man-optimal to a
core stable g’ as defined in Claim 3. Note that there must be some network
that connects to the man optimal network.

CLAM 5. If there are k> 1 core stable networks, then the resistance of
any core-stable network is k—1.

By Claim 4, we know this for the man-optimal (and correspondingly the
woman optimal) network. Consider some other core stable g. We know
that this is man-optimal under a change of preferences where each man’s
preferences are changed so that any woman that he preferred to his mate
under g is now unacceptable. Then, by the logic of Claim 4, there exists a
restricted g tree where the resistance of each edge is 1 among the core
stable networks of the modified preferences. (The resistance of each of
these edges is the same under the original preferences since no one is ever
linked to an unacceptable mate). Next we show that this restricted g-tree is
identical to a restricted g-tree on the set of core stable networks that all
men find weakly less preferred to g under the original preferences. This
statement is true if the set of core stable networks that all men find weakly
less preferred to g under the original preferences (call this set Gy) equals the
set of core stable networks of the modified preferences (call this set G,).
Next we show that G, = Gy. It is clear that Gy = G, since if a network in
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Gy is not blocked under the original preferences it is not blocked under
the modified preferences. It is also obvious that if g’ € G, and g’ was core
stable under the original preferences then g’ must be weakly less preferred
to g by all men under the original preferences. All that is left is to show
that if g’ is core stable under the modified preferences then g’ is core
stable under the original preferences. First of all, since the set of accept-
able mates under the original preferences includes all those that are
acceptable under the modified preferences, no individual finds his or her
g’ mate unacceptable under the original preferences. All that is left is to
consider blocking by a pair of a man and a woman (as we know from
Gale and Shapley [17] that we need only examine blocking coalitions of
two or fewer individuals). As only the man’s preferences have been
altered, if g’ is blocked under the original preferences by such a pair
(my, w,) but not under the modified preferences, then it must be that m,
strictly prefers w, to his mate in g’, under his original preferences but not
under the modified ones, while w, is indifferent between her mate in g’
and m,. We show that this cannot be the case by showing that in such a
case w, must strictly prefer her mate in g’ to m,. Consider two cases.
First, suppose m, weakly prefers his mate in g to w, under the original
preferences. Then both w, and m,(g') are no better under the original
preferences than m,(g), and hence m,’s ranking of these are unchanged in
the modified preferences, which contradicts the above. Second, suppose
my, strictly prefers w, to m,(g). Since g was core stable under the original
preferences, it must be that w, strictly prefers w,(g) to m,. The modified
preferences are constructed so that w, is the most preferred mate of w,(g).
By the core stability of g’ under the modified preferences, it must be that
w, weakly prefers w,(g’) to w,(g). Therefore, w, weakly prefers w,(g’) to
wi(g) and so w, strictly prefers w,(g") to m;.

Thus, we can find a restricted g-tree on the set of core stable networks
that all men find weakly less preferred to g under the original preferences,
where the resistance of each edge is 1. Similarly we can find a restricted
g-tree on the set of core stable networks that all men find weakly preferred
to g (using Theorem A and working to the woman-optimal network) where
the resistance of each edge is 1. The remaining core stable networks that we
have not yet described edges for must not be uniformly ranked by men
relative to g. For those networks keep the same directed edges as in the tree
in Claim 4. Since from the proof of claim 3 those edges always point to
networks that all men weakly prefer and some strictly prefer to the starting
network, these directed edges cannot cycle and must eventually lead to a
core stable network g’ that is weakly preferred by all men to g. Since there
is a directed path from g’ to g, this defines a restricted g-tree and it has
resistance k— 1.

Claims 1, 2, and 5 establish the theorem. ||
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